
Tutorial 5: Circular Lists

Computer Science 214: Data Structures and Algorithms

6 March 2009 Due: 20 March 2009

Instructions

Your completed tutorial must be submitted as a jar, containing your source
code, via WebCT by Friday, 20 March 2009 at 14:00. Remember that you
are writing a class test on Friday, 13 March 2009, so you do not really have
two weeks to complete the tutorial. The usual terms and conditions apply: No
late submissions are possible. Should you like to leave the tutorial session before
16:50, the tutorial must be completed in full and demonstrated to the lecturer or
one of the assistants. Note that this course is assessed by continuous evaluation
and that all tutorials to be submitted count directly towards your final mark.

Overview

In this tutorial, you will

• implement a circular list class, adhering to a given interface;

• write code to test this class, paying attention to coverage; and

• start building the GUI that will eventually become your web browser,
using the circular list as underlying data structure for keeping tabs.

Tutorial

1. Download the source bundle cs214-tut05.jar from WebCT, create a new
Java project in Eclipse, and import the source code from the jar.

2. Use the same package structure as was used in the source bundle. If you
do not follow this structure, you will be penalised severely as it will impede
standardised testing of your work.

3. Write a parameterised class cs214.lists.CircularList〈E〉1 that im-
plements the parameterised interface cs214.lists.CircularListADT〈E〉.
The defining characteristic of a circular list is that it has a single access
point, called the cursor, which may be moved around to point to various
list nodes so as to access the data element stored in any particular node.

(a) Use a variation of the doubly-linked list as the underlying data struc-
ture. This is not to say that you have to create a separate class
implementing a doubly-linked list. Rather, use the structure of a

1For clarity we shall use the fully qualified package path when first mentioning a class.

1



doubly-linked list directly in your implementation. Since the list is
circular, there should be neither header nor trailer nodes—only the
cursor keeps a handle on the underlying node list.

(b) For the nodes of the circular list, create a parameterised class cs214.
lists.CNode〈E〉 that implements cs214.common.Position〈E〉. Base
your design on that of a node in a doubly-linked list.

(c) Implement the iterator over the nodes in the circular list as a local
class or as an anonymous local class. The iterator need neither make
a snapshot of the list, nor worry about the possibility of changes made
to the list while the iterator iterates over the list. That is to say, the
iterator does not need to fail fast. Your iterator may not change
the state of the list in any way, so you may not change any values,
including the cursor. You should handle the remove() method of
the iterator by throwing an UnsupportedOperationException() as
only statement in its body.

(d) When implementing any removal operations, null out all relevant
fields in the removed structures so that these may be picked up by
the garbage collector.

(e) Be sure to override the toString() method in both CNode〈E〉 and
CircularList〈E〉. In the former case, return something to the effect
that it is a node, as well as the string representation of the element
stored at the node. In the latter case, return a string representation
of the list as a vector. Do not change the state of the list in any way
when computing its string representation.

4. Write a class in the package cs214.tests to test your implementation of
CircularList〈E〉. You should test each method separately to verify that
it works according to the specification. Assuming that your toString()
methods work correctly, use these to test and debug. Also, be sure to
test boundary cases—here, test that your implementation performs as
expected, possibly throwing the indicated exceptions, when passed null
values, when operating on an empty list, or when performing an operation
that results in an empty list. In all cases, ensure that your list is in a
coherent state, i.e., that there are no references to unlinked nodes, etc.

5. Using your CircularList, write a minimal GUI that implements tabbing
as found in web browsers like Firefox. You need not render actual HTML
pages; use a JPanel with a distinguishing JLabel—or something similar—
to represent a page tab. You may not use JTabbedPane; rather, provide
four buttons in your window to handle the following operations—note how
these buttons correspond to functionality provided by your circular list:

(a) New to create a new tab;

(b) Close to close the current tab;

(c) Next to display the next tab in the list; and

(d) Previous to display the previous tab in the list.

6. Try to plan your GUI well: Although you will change your GUI consider-
ably as you add functionality, the better you plan now, the less your work

2



will be later on. Think, always, of what the web browsers you use every
day—okay, you may ignore Internet Explorer—look like. For example, it
is an excellent idea to have some kind of status area for displaying error
and other messages. It is a less excellent idea to use dialog boxes for error
conditions—just think how frustrated you will be when your web browser
shows a dialog for every single error or broken piece of HTML it encoun-
ters. Put the code for your GUI in the package cs214.gui, and make it
the application entry point of your jar file to be submitted.

Background Information and Reading

Refer to §3.3 in your text book for a discussion and implementation of a doubly-
linked list. In particular, look at Code Fragment 3.17 for a class representing
a node of a doubly-linked list. You may reuse this code as far as possible,
but remember that your circular list node must be parameterised, as well as
implement the Position〈E〉 interface. Code Fragment 3.23 shows how to null
out the references of removed nodes.

Nested and inner classes are discussed in the Java Tutorial. For an intro-
duction, read at least http://star.sun.ac.za/java/docs/tutorial/java/
javaOO/nested.html, and consider the example in http://star.sun.ac.za/
java/docs/tutorial/java/javaOO/innerclasses.html. Remember: These
are introductory remarks, and in any event, we want to use local classes or
anonymous local classes. Local classes are discussed at http://docstore.mik.
ua/orelly/java-ent/jnut/ch03 11.htm, and anonymous classes in http://
docstore.mik.ua/orelly/java-ent/jnut/ch03 12.htm (use sinetkey). In
particular, note that, if I is an interface, the expression syntax

new I() {

class-body

}

creates an anonymous local class, with the given class-body, that must implement
the interface I, and also creates an object of that anonymous class. Note that
there can be no constructor and that the parameter list after I must be empty.
In the Swing tutorial of last week, you have already seen such use:

public static void main(String[] args) {
// Schedule a job for the event-dispatching thread:

// creating and showing this application’s GUI.

javax.swing.SwingUtilities.invokeLater(new Runnable() {
public void run() {

createAndShowGUI();
}

});
}

The invokeLater() has single parameter that must implement the Runnable
interface. Runnable mandates a single method run(), which the code above
implements in an anonymous local class.

UnsupportedOperationException is detailed in the Java API documenta-
tion. The Swing classes mentioned are described in both in the Java Tutorial
and API documentation.

3

http://star.sun.ac.za/java/docs/tutorial/java/javaOO/nested.html
http://star.sun.ac.za/java/docs/tutorial/java/javaOO/nested.html
http://star.sun.ac.za/java/docs/tutorial/java/javaOO/innerclasses.html
http://star.sun.ac.za/java/docs/tutorial/java/javaOO/innerclasses.html
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_11.htm
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_11.htm
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_12.htm
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_12.htm

